Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Front Immunol ; 15: 1367253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646533

RESUMO

Bovine respiratory disease (BRD) is one of the most common diseases in the cattle industry worldwide; it is caused by multiple bacterial or viral coinfections, of which Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the most notable pathogens. Although live vaccines have demonstrated better efficacy against BRD induced by both pathogens, there are no combined live and marker vaccines. Therefore, we developed an attenuated and marker M. bovis-BoHV-1 combined vaccine based on the M. bovis HB150 and BoHV-1 gG-/tk- strain previously constructed in our lab and evaluated in rabbits. This study aimed to further evaluate its safety and protective efficacy in cattle using different antigen ratios. After immunization, all vaccinated cattle had a normal rectal temperature and mental status without respiratory symptoms. CD4+, CD8+, and CD19+ cells significantly increased in immunized cattle and induced higher humoral and cellular immune responses, and the expression of key cytokines such as IL-4, IL-12, TNF-α, and IFN-γ can be promoted after vaccination. The 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- combined strain elicited the most antibodies while significantly increasing IgG and cellular immunity after challenge. In conclusion, the M. bovis HB150 and BoHV-1 gG-/tk- combined strain was clinically safe and protective in calves; the mix of 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- strain was most promising due to its low amount of shedding and highest humoral and cellular immune responses compared with others. This study introduces an M. bovis-BoHV-1 combined vaccine for application in the cattle industry.


Assuntos
Herpesvirus Bovino 1 , Mycoplasma bovis , Vacinas Atenuadas , Vacinas Combinadas , Animais , Bovinos , Herpesvirus Bovino 1/imunologia , Vacinas Combinadas/imunologia , Vacinas Combinadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Mycoplasma bovis/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/efeitos adversos , Citocinas/metabolismo , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/imunologia , Vacinas Marcadoras/imunologia , Vacinas Marcadoras/administração & dosagem , Vacinação/veterinária , Eficácia de Vacinas , Imunidade Humoral , Complexo Respiratório Bovino/prevenção & controle , Complexo Respiratório Bovino/imunologia , Complexo Respiratório Bovino/virologia
2.
Animals (Basel) ; 14(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38473133

RESUMO

Bovine respiratory disease (BRD) is one of the most common diseases in the cattle industry; it is a globally prevalent multifactorial infection primarily caused by viral and bacterial coinfections. In China, Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the most notable pathogens associated with BRD. Our previous study attempted to combine the two vaccines and conducted a preliminary investigation of their optimal antigenic ratios. Based on this premise, the research extended its investigation by administering varying vaccine doses in a rabbit model to identify the most effective immunization dosage. After immunization, all rabbits in other immunization dose groups had a normal rectal temperature without obvious clinical symptoms. Furthermore, assays performed on the samples collected from immunized rabbits indicated that there were increased humoral and cellular immunological reactions. Moreover, the histological analysis of the lungs showed that immunized rabbits had more intact lung tissue than their unimmunized counterparts after the challenge. Additionally, there appears to be a positive correlation between the protective efficacy and the immunization dose. In conclusion, the different immunization doses of the attenuated and marker M. bovis HB150 and BoHV-1 gG-/tk- combined vaccine were clinically safe in rabbits; the mix of 2.0 × 108 CFU of M. bovis HB150 and 2.0 × 106 TCID50 BoHV-1 gG-/tk- strain was most promising due to its highest humoral and cellular immune responses and a more complete morphology of the lung tissue compared with others. These findings determined the optimal immunization dose of the attenuated and marker M. bovis HB150 and BoHV-1 gG-/tk- combined vaccine, laying a foundation for its clinical application.

3.
Res Vet Sci ; 170: 105183, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359648

RESUMO

The role of wildlife in maintaining infectious diseases in veterinary medicine is often neglected, although the disease eradication process in domestic animals is continuously affected by the risk of pathogens transmission from wildlife as a primary source. The main aim of this paper was to estimate the prevalence and distribution of selected infectious diseases in wild ruminants in Serbia. In total, 259 sera from wild ruminants were tested for specific antibodies to bluetongue virus, Schmallenberg virus, Bovine viral diarrhea/border disease virus, Capripox virus, West Nile fever virus, Bovine herpes virus-1, Coxiella burnetii, Brucella spp., and Leptospira spp. Specific Capripox virus and Leptospira spp. antibodies were not detected in any of the 259 wild ruminant samples. Although one animal was detected positive for BVDV/BDV specific antibodies, with 99.8% confidence, the prevalence of BVD within this population could be very low i.e. essentially free from BVD infection. One and three positive animals were detected for Brucella spp. and Coxiella burnetii antibodies, respectively. Bovine herpes virus-1 specific antibodies were detected in 20.85% of the samples. The estimated seroprevalence of vector-borne diseases was 20.5% for Schmallenberg disease, 34.3% for West Nile fever, and 38.6% for Bluetongue. Considering the reported results, wildlife health status is a result of different factors in complex relation, such as the presence of disease in domestic animals, disease nature, pathogen characteristics, environmental factors, presence, and vector competence. Wildlife should be considered not only as a risk but as a source of important information on disease distribution and its indicators.


Assuntos
Doenças Transmissíveis , Febre do Nilo Ocidental , Animais , Sérvia/epidemiologia , Estudos Soroepidemiológicos , Estudos Transversais , Febre do Nilo Ocidental/veterinária , Ruminantes , Animais Selvagens , Animais Domésticos , Doenças Transmissíveis/veterinária , Anticorpos Antivirais
4.
Vet Microbiol ; 291: 110031, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412580

RESUMO

Bovine herpesvirus 1 (BoHV-1) is a highly contagious pathogen which causes infectious bovine rhinotracheitis in cattle worldwide. Although it has the ability to evade the host's antiviral innate immune response and establish persistent latent infections, the mechanisms are not fully understood, especially the function of the tegument protein to escape innate immunity and participate in viral replication. In this study, we showed that overexpression of tegument protein UL3 facilitates BoHV-1 replication and suppresses the expression of type-I interferon (IFN-I) and IFN-stimulated genes. Then, STING was identified as the target by which UL3 inhibits the IFN-I signaling pathway, and STING was degraded through the UL3-induced autophagy pathway. Furthermore, overexpression of UL3 promotes the expression of the autophagy-related protein ATG101, thereby inducing autophagy. Further study showed that UL3 enhances the interaction between ATG101 and STING, and then the degradation of STING was reversed following ATG101 silencing in UL3-overexpressing cells during BoHV-1 infection. Our research results demonstrate a novel function of UL3 in regulating host's antiviral response and provide a potential mechanism for BoHV-1 immune evasion.


Assuntos
Infecções por Herpesviridae , Herpesvirus Bovino 1 , Proteínas Virais , Animais , Bovinos , Antivirais , Autofagia , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/metabolismo , Imunidade Inata/genética , Replicação Viral/genética , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/veterinária , Proteínas Virais/metabolismo
5.
Viruses ; 16(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400072

RESUMO

To identify host factors that affect Bovine Herpes Virus Type 1 (BoHV-1) infection we previously applied a genome wide CRISPR knockout screen targeting all bovine protein coding genes. By doing so we compiled a list of both pro-viral and anti-viral proteins involved in BoHV-1 replication. Here we provide further analysis of those that are potentially involved in viral entry into the host cell. We first generated single cell knockout clones deficient in some of the candidate genes for validation. We provide evidence that Polio Virus Receptor-related protein (PVRL2) serves as a receptor for BoHV-1, mediating more efficient entry than the previously identified Polio Virus Receptor (PVR). By knocking out two enzymes that catalyze HSPG chain elongation, HST2ST1 and GLCE, we further demonstrate the significance of HSPG in BoHV-1 entry. Another intriguing cluster of candidate genes, COG1, COG2 and COG4-7 encode six subunits of the Conserved Oligomeric Golgi (COG) complex. MDBK cells lacking COG6 produced fewer but bigger plaques compared to control cells, suggesting more efficient release of newly produced virions from these COG6 knockout cells, due to impaired HSPG biosynthesis. We further observed that viruses produced by the COG6 knockout cells consist of protein(s) with reduced N-glycosylation, potentially explaining their lower infectivity. To facilitate candidate validation, we also detailed a one-step multiplex CRISPR interference (CRISPRi) system, an orthogonal method to KO that enables quick and simultaneous deployment of three CRISPRs for efficient gene inactivation. Using CRISPR3i, we verified eight candidates that have been implicated in the synthesis of surface heparan sulfate proteoglycans (HSPGs). In summary, our experiments confirmed the two receptors PVR and PVRL2 for BoHV-1 entry into the host cell and other factors that affect this process, likely through the direct or indirect roles they play during HSPG synthesis and glycosylation of viral proteins.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Poliomielite , Humanos , Proteoglicanas de Heparan Sulfato , Internalização do Vírus , Receptores Virais/genética , Proteínas de Transporte
6.
Virology ; 593: 110012, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367473

RESUMO

Using marker vaccines to control bovine alphaherpesvirus-1 (BoHV-1) is a novel strategy for differentiation between infected and vaccinated animals (DIVA). In this study, multiplex real-time PCR targeting gD and gE genes was applied for BoHV-1 screening on 60 clinical samples from cattle with a history of vaccination, in some cases by US2-deleted marker vaccines, that were suffering from severe respiratory symptoms. Conventional PCR targeting the gC and US2 flanking region was done for molecular characterization and identification of the US2-deleted vaccine strain. Six samples were positive for BoHV-1 by both RT-PCR and conventional PCR. Surprisingly, a conventional PCR DIVA trial based on the US2 gene revealed that only one sample that exhibited the US2 gene was a wild virus, while others that did not exhibit the US2 gene were vaccine viruses. Phylogenetic characterization classifies the samples as BoHV-1.1. This finding reveals the circulation of vaccine virus in field-diseased animals, which threatens the eradication program.


Assuntos
Doenças dos Bovinos , Infecções por Herpesviridae , Herpesvirus Bovino 1 , Animais , Bovinos , Herpesvirus Bovino 1/genética , Vacinas Marcadoras/genética , Egito/epidemiologia , Filogenia , Reação em Cadeia da Polimerase em Tempo Real
7.
Vet Microbiol ; 288: 109932, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043447

RESUMO

Bovine herpesvirus 1(BoHV-1) is an important bovine pathogen that causes great economic loss to cattle farms worldwide. The virus-productive infection in bovine kidney (MDBK) cells results in ATP depletion. The mechanisms are not well understood. Mitochondrial fatty acid ß-oxidation (FAO) is an important energy source in many tissues with high energy demand. Since carnitine palmitoyl-transferase 1 A (CPT1A) is the rate-limiting enzyme of FAO, we investigated the interactions between virus-productive infection and CPT1A signaling. Here, we found that virus-productive infection at the later stage significantly decreased CPT1A protein levels in all the detected cells, including MDBK, A549, and Neuro-2A cells, differentially altered the accumulation of CPT1A proteins in the nucleus and cytosol, and re-localized the protein in the nucleus. Etomoxir (ETO), an irreversible inhibitor of CPT1A, inhibited viral replication and partially interfered with the ability of BoHV-1 to alter CPT1A accumulation in the nucleus but not in the cytosol. Furthermore, ETO consistently reduced RNA levels of two viral regulatory proteins (bICP0 and bICP22) and protein expression of virion-associated proteins during productive infection, further supporting the important roles of CPT1A signaling in BoHV-1 productive infection. These data, for the first time, suggest that CPT1A is potentially involved in BoHV-1 productive infection.


Assuntos
Doenças dos Bovinos , Infecções por Herpesviridae , Herpesvirus Bovino 1 , Bovinos , Animais , Herpesvirus Bovino 1/genética , Replicação Viral , Infecções por Herpesviridae/veterinária , Transferases/metabolismo , Carnitina/metabolismo
8.
J Virol ; 98(1): e0143623, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38084958

RESUMO

Bovine alphaherpesvirus 1 (BoHV-1) infections cause respiratory tract disorders and suppress immune responses, which can culminate in bacterial pneumonia. Following acute infection, BoHV-1 establishes lifelong latency in sensory neurons present in trigeminal ganglia (TG) and unknown cells in pharyngeal tonsil. Latently infected calves consistently reactivate from latency after an intravenous injection of the synthetic corticosteroid dexamethasone (DEX), which mimics the effects of stress. The immediate early transcription unit 1 (IEtu1) promoter drives expression of infected cell protein 0 (bICP0) and bICP4, two key viral transcriptional regulators. The IEtu1 promoter contains two functional glucocorticoid receptor (GR) response elements (GREs), and this promoter is transactivated by GR, DEX, and certain Krüppel transcription factors that interact with GC-rich motifs, including consensus specificity protein 1 (Sp1) binding sites. Based on these observations, we hypothesized that Sp1 stimulates productive infection and transactivates key BoHV-1 promoters. DEX treatment of latently infected calves increased the number of Sp1+ TG neurons and cells in pharyngeal tonsil indicating that Sp1 expression is induced by stress. Silencing Sp1 protein expression with siRNA or mithramycin A, a drug that preferentially binds GC-rich DNA, significantly reduced BoHV-1 replication. Moreover, BoHV-1 infection of permissive cells increased Sp1 steady-state protein levels. In transient transfection studies, GR and Sp1 cooperatively transactivate IEtu1 promoter activity unless both GREs are mutated. Co-immunoprecipitation studies revealed that GR and Sp1 interact in mouse neuroblastoma cells (Neuro-2A) suggesting this interaction stimulates IEtu1 promoter activity. Collectively, these studies suggested that the cellular transcription factor Sp1 enhances productive infection and stress-induced BoHV-1 reactivation from latency.IMPORTANCEFollowing acute infection, bovine alphaherpesvirus 1 (BoHV-1) establishes lifelong latency in sensory neurons in trigeminal ganglia (TG) and pharyngeal tonsil. The synthetic corticosteroid dexamethasone consistently induces BoHV-1 reactivation from latency. The number of TG neurons and cells in pharyngeal tonsil expressing the cellular transcription factor specificity protein 1 (Sp1) protein increases during early stages of dexamethasone-induced reactivation from latency. Silencing Sp1 expression impairs BoHV-1 replication in permissive cells. Interestingly, mithramycin A, a neuroprotective antibiotic that preferentially binds GC-rich DNA, impairs Sp1 functions and reduces BoHV-1 replication suggesting that it is a potential antiviral drug. The glucocorticoid receptor (GR) and Sp1 cooperatively transactivate the BoHV-1 immediate early transcript unit 1 (IEtu1) promoter, which drives expression of infected cell protein 0 (bICP0) and bICP4. Mithramycin A also reduced Sp1- and GR-mediated transactivation of the IEtu1 promoter. These studies revealed that GR and Sp1 trigger viral gene expression and replication following stressful stimuli.


Assuntos
Infecções por Herpesviridae , Herpesvirus Bovino 1 , Receptores de Glucocorticoides , Fator de Transcrição Sp1 , Animais , Bovinos , Camundongos , Corticosteroides/metabolismo , Dexametasona/farmacologia , DNA/metabolismo , Herpesvirus Bovino 1/fisiologia , Plicamicina/análogos & derivados , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Fator de Transcrição Sp1/metabolismo
9.
Proteins ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38069558

RESUMO

Bovine herpesvirus type 1 (BoHV-1) is a pathogen of cattle responsible for infectious bovine rhinotracheitis. The BoHV-1 UL49.5 is a transmembrane protein that binds to the transporter associated with antigen processing (TAP) and downregulates cell surface expression of the antigenic peptide complexes with the major histocompatibility complex class I (MHC-I). KLHDC3 is a kelch domain-containing protein 3 and a substrate receptor of a cullin2-RING (CRL2) E3 ubiquitin ligase. Recently, it has been identified that CRL2KLHDC3 is responsible for UL49.5-triggered TAP degradation via a C-degron pathway and the presence of the degron sequence does not lead to the degradation of UL49.5 itself. The molecular modeling of KLHDC3 in complexes with four UL49.5 C-terminal decapeptides (one native protein and three mutants) revealed their activity to be closely correlated with the conformation which they adopt in KLHDC3 binding cleft. To analyze the interaction between UL49.5 and KLHDC3 in detail, in this work a total of 3.6 µs long molecular dynamics simulations have been performed. The complete UL49.5-KLHDC3 complexes were embedded into the fully hydrated all-atom lipid membrane model with explicit water molecules. The network of polar interactions has been proposed to be responsible for the recognition and binding of the degron in KLHDC3. The interaction network within the binding pocket appeared to be very similar between two CRL2 substrate receptors: KLHDC3 and KLHDC2.

10.
Access Microbiol ; 5(10)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970075

RESUMO

Animal welfare and economic implications of infectious diseases in cattle demand an efficient surveillance as the foundation for control and eradication programmes. Bovine respiratory syncytial virus (BRSV), Parainfluenza virus type 3 (PI3V), Bovine herpes virus-1 (BoHV-1), Bovine viral diarrhoea virus (BVDV), and Enzootic bovine leukosis virus (EBLV) cause common and often underdiagnosed diseases in cattle that are endemic in most countries [1]. A hallmark of individual exposure to a viral pathogen is the presence of antibodies directed towards that virus. The aim of this study was to develop and validate a pentaplex assay to simultaneously detect and quantify antibodies against BRSV, PI3V, BoHV-1, BVDV and EBLV in serum, as an efficient tool to yield epidemiological data. Monoplex assays were initially developed using either complete BRSV or BoHV-1 viral lysates, or recombinant proteins for BVDV, EBLV or PI3V as capture antigens. In addition, 125 serum samples from unvaccinated cattle, which were classified as positive or negative for each of the viruses by commercial ELISA kits, were used for validation. Conditions established for the Luminex monoplex assays were adopted for the pentaplex assay. The accuracy, determined by the area under the ROC curve, was greater than 0.97, and assay diagnostic sensitivities and specificities were over 95 and 90%, respectively, for all antigens. Intra (r) and interassay (R) coefficients of variation were under 10 and 20 %, respectively. Selectivity towards target viruses was shown by binding inhibition assays where unbound viruses reduced fluorescence intensities. Diagnostic agreement for samples analysed simultaneously in the monoplex and multiplex assays was almost perfect. In conclusion, a highly sensitive pentaplex assay was validated for the simultaneous identification of antibodies directed against BVDV, BoHV-1, PI3V, BRSV and EBLV in serum. The developed pentaplex assay complies with performance characteristics established by international guidelines for diagnostic tests and may be used as a tool for the implementation of epidemiological surveillance.

11.
Viruses ; 15(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38005861

RESUMO

Rift Valley fever virus (RVFV) is considered to be a high biodefense priority based on its threat to livestock and its ability to cause human hemorrhagic fever. RVFV-infected livestock are also a significant risk factor for human infection by direct contact with contaminated blood, tissues, and aborted fetal materials. Therefore, livestock vaccination in the affected regions has the direct dual benefit and one-health approach of protecting the lives of millions of animals and eliminating the risk of severe and sometimes lethal human Rift Valley fever (RVF) disease. Recently, we have developed a bovine herpesvirus type 1 (BoHV-1) quadruple gene mutant virus (BoHV-1qmv) vector that lacks virulence and immunosuppressive properties due to the deletion of envelope proteins UL49.5, glycoprotein G (gG), gE cytoplasmic tail, and US9 coding sequences. In the current study, we engineered the BoHV-1qmv further by incorporating a chimeric gene sequence to express a proteolytically cleavable polyprotein: RVFV envelope proteins Gn ectodomain sequence fused with bovine granulocyte-macrophage colony-stimulating factor (GMCSF) and Gc, resulting in a live BoHV-1qmv-vectored subunit vaccine against RVFV for livestock. In vitro, the resulting recombinant virus, BoHV-1qmv Sub-RVFV, was replicated in cell culture with high titers. The chimeric Gn-GMCSF and Gc proteins expressed by the vaccine virus formed the Gn-Gc complex. In calves, the BoHV-1qmv Sub-RVFV vaccination was safe and induced moderate levels of the RVFV vaccine strain, MP12-specific neutralizing antibody titers. Additionally, the peripheral blood mononuclear cells from the vaccinated calves had six-fold increased levels of interferon-gamma transcription compared with that of the BoHV-1qmv (vector)-vaccinated calves when stimulated with heat-inactivated MP12 antigen in vitro. Based on these findings, we believe that a single dose of BoHV-1qmv Sub-RVFV vaccine generated a protective RVFV-MP12-specific humoral and cellular immune response. Therefore, the BoHV-1qmv sub-RVFV can potentially be a protective subunit vaccine for cattle against RVFV.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vacinas Virais , Animais , Bovinos , Humanos , Vírus da Febre do Vale do Rift/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Leucócitos Mononucleares , Imunidade Celular , Vacinas Atenuadas/genética , Vacinas de Subunidades
12.
Vaccines (Basel) ; 11(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38006030

RESUMO

Bovine respiratory disease (BRD) is a global prevalent multifactorial infection primarily caused by viral and bacterial coinfections. In China, Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the predominant pathogens associated with BRD. Our previous study involved the development of attenuated M. bovis HB150 and BoHV-1 gG-/tk- vaccine strains, which were thoroughly assessed for their safety profiles and protective efficacy in cattle. In this study, we applied a combination of vaccines in varying ratios and used a rabbit model to determine the safety and protective efficacy. We used PCR/RT-PCR to detect the postimmunization and challenge shedding of M. bovis and BoHV-1. Additionally, we measured antibody titers and the expression of IFN-ß and TNF-α to evaluate the humoral and cellular immune responses, respectively. Furthermore, we performed a histopathological analysis to assess lung damage. Our study provides evidence of the safety and effectiveness of the bivalent M. bovis-BoHV-1 vaccine in rabbits, particularly when applying a combination of 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 of the BoHV-1 gG-/tk- strain. The bivalent vaccine significantly enhanced both the long-term antibody immune response and cellular protection against the M. bovis and BoHV-1 challenge. These findings provide a valuable model for the potential application in cattle.

13.
Biologicals ; 84: 101720, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37944302

RESUMO

Bovine herpes virus-1 (BoHV-1) is responsible for production losses through decreased milk yields, abortions, infertility, and trade restrictions in the bovine population. The disease is endemic in many countries including India. As the virus harbors a unique feature of latency animals once infected with the virus remain sero-positive for lifetime and can re-excrete the virus when exposed to stressful conditions. Hence, identification and culling of infected animals is only the means to minimize infection-associated losses. In this study, an economical indigenous assay for the detection of BoHV-1 specific antibodies was developed to cater to the huge bovine population of the country. The viral structural gD protein, expressed in the prokaryotic system was used for optimization of an indirect ELISA for bovines followed by statistical validation of the assay. The diagnostic sensitivity and specificity of the indirect ELISA were 82.9% and 91.3% respectively. Systematically collected serum samples representing organized, unorganized and breeding farms of India were tested with the indigenously developed assay for further validation.


Assuntos
Doenças dos Bovinos , Herpesvirus Bovino 1 , Animais , Bovinos , Proteínas Virais , Ensaio de Imunoadsorção Enzimática , Anticorpos Antivirais , Índia , Doenças dos Bovinos/diagnóstico
14.
Animals (Basel) ; 13(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37893888

RESUMO

Infectious bovine rhinotracheitis (IBR) caused by bovine herpes virus 1 (BoHV-1) can lead to enormous economic losses in the cattle industry. Vaccine immunization is preferentially used to decrease its transmission speed and resultant clinical signs, rather than to completely stop viral infection. Therefore, a drug effective in treating IBR is urgently needed. Our previous work demonstrated that ivermectin significantly inhibited viral replication in a cell infection model. This study aimed to investigate its antiviral effects in vivo by using a rabbit infection model. The viral inhibition assay was first used to confirm that ivermectin at low concentrations (6-25 nM) could reduce viral titers (TCID50) significantly (p < 0.001) at 24 h post-infection. In rabbits, ivermectin was administrated with one to three doses, based on the recommended anti-parasite treatment dosage (0.2 mg/kg bodyweight) through subcutaneous injection at different days post-infection in the treated IBRV infection groups, while non-treated infection group was used as the control. The infected rabbits showed hyperthermia and other clinical signs, but the number of high-fever rabbits in the ivermectin treatment groups was significantly lower than that in the non-treated infection group. Furthermore, in ivermectin treatment groups, the cumulative clinical scores correlated negatively with drug doses and positively with delay of administration time post-infection. The overall nasal shedding time in ivermectin-treated groups was two days shorter than the non-treated challenge group. At the same time point, the titer of neutralizing antibodies in the treatment group with triple doses was higher than the other two-dose groups, but the difference between the treatment groups decreased with the delay of drug administration. Correspondingly, the serious extent of lung lesions was negatively related to the dosage, but positively related to the delay of drug administration. The qPCR with tissue homogenates showed that the virus was present in both the lung tissues and trigeminals of the infected rabbits. In conclusion, ivermectin treatment had therapeutic effect by decreasing clinical signs and viral shedding, but could not stop virus proliferation in lung tissues and trigeminals.

15.
Infect Drug Resist ; 16: 5729-5740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670981

RESUMO

Background: Virus infection can cause the changes of lncRNA expression levels to regulate the interaction between virus and host, but the relationship between BHV-1 infection and lncRNA has not been reported. Methods: In this study, in order to reveal the molecular mechanism of RNA in BoHV-1 infection, the Madin-Darby bovine kidney (MDBK) cells were infected with BoHV-1, transcriptome sequencing were performed by next-generation sequencing at 18 h or 24 h or 33 h of viral infection and then based on the competitive endogenous RNA (ceRNA) theory, lncRNA-miRNA-mRNA networks were constructed using these high-throughput sequencing data. The network analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed for functional annotation and exploration of ncRNA ceRNAs in BoHV-1 infection. Results: The results showed that 48 lncRNAs, 123 mRNAs and 20 miRNAs as differentially expressed genes, and the mitogen activated protein kinase (MAPK) pathway and calcium signaling pathway were significantly enriched in the ceRNA network. Some differentially expressed lncRNA genes were randomly selected for verification by RT-qPCR, and the results showed that their expression trend was consistent with the results of transcriptome sequencing data. Conclusion: This study revealed that BoHV-1 infection can affect the expression of RNAs in MDBK cells and the regulation of ceRNA network to carry out corresponding biological functions in the host, but further experimental studies are still necessary to prove the hub genes function in ceRNA network and the molecular mechanism in BoHV-1 infection.

16.
Viruses ; 15(9)2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37766211

RESUMO

Given the emergence of the coronavirus disease 2019 (COVID-19), zoonoses have raised in the spotlight of the scientific community. Animals have a pivotal role not only for this infection, but also for many other recent emerging and re-emerging viral diseases, where they may represent both intermediate hosts and/or vectors for zoonoses diffusion. Today, roughly two-thirds of human infections are derived from animal origins; therefore, the search for new broad-spectrum antiviral molecules is mandatory to prevent, control and eradicate future epidemic outbreaks. Host defense peptides, derived from skin secretions of amphibians, appear as the right alternative to common antimicrobial drugs. They are cationic peptides with an amphipathic nature widely described as antibacterial agents, but less is reported about their antiviral potential. In the present study, we evaluated the activity of five amphibian peptides, namely RV-23, AR-23, Hylin-a1, Deserticolin-1 and Hylaseptin-P1, against a wide panel of enveloped animal viruses. A strong virucidal effect was observed for RV-23, AR-23 and Hylin-a1 against bovine and caprine herpesviruses, canine distemper virus, bovine viral diarrhea virus, and Schmallenberg virus. Our results identified these three peptides as potential antiviral-led candidates with a putative therapeutic effect against several animal viruses.


Assuntos
COVID-19 , Vírus , Animais , Humanos , Cabras , Zoonoses/prevenção & controle , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antivirais/farmacologia
17.
Animals (Basel) ; 13(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37627398

RESUMO

Bovine herpes virus -1 (BoHV-1) infection leads to upper respiratory tract infection, conjunctivitis and genital disorders in cattle. To control BoHV-1, it is important to understand the role of viral proteins in viral infection. BoHV-1 has several gene products to help in viral replication in infected cell. One such gene is deoxyuridine triphosphate nucleotidohydrolase (dUTPase) also known as UL50. In this study, we analyzed the amino acid sequence of UL50 (dUTPase) using bioinformatics tools and found that it was highly conserved among herpesvirus family. Then, it was cloned and expressed in Escherichia coli Rosetta (DE3), induced by isopropy1-b-D-thiogalactopyranoside (IPTG) and the recombinant UL50 protein was purified to immunize rabbits for the preparation of polyclonal antiserum. The results indicated that the UL50 gene of BoHV-1 was composed of 978 nucleotides, which encoded 323 amino acids. Western blot analysis revealed that polyclonal sera against UL50 reacted with a band of 34 kDa. Furthermore, immunofluorescence assay showed that UL50 localized in the cytoplasmic area. Taken together, UL50 was successfully cloned, expressed and detected in BoHV-1-infected cells and was localized in the cytoplasm to help in the replication of BoHV-1 in infected cells.

18.
Vet Med Sci ; 9(4): 1934-1939, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37401542

RESUMO

BACKGROUND: Bovine alphaherpesvirus 1 (BoHV-1) is a serious disease with severe negative economic effects on the global cattle sector, especially in Iran. OBJECTIVE: This cross-sectional study was carried out to examine the seroprevalence and associated risk factors of BoHV-1 infection with progesterone levels and embryo death in 30-day pregnant dairy cattle at Zagros Industrial Dairy Farm in Shahrekord, Iran. METHODS: Between December 2017 to February 2018, blood samples were obtained from 60 dairy cow herds. To determine whether BoHV-1 was present, serum samples were examined using the ELISA for serum antibodies. To find progesterone (P4) in blood, the progesterone ELISA test was used. RESULTS: 96.7 % of sera tested positive for BoHV-1 antibodies, according to the findings. Additionally, 60.34 % of blood samples that tested positive had an experience of abortion and significantly more inseminations that resulted in pregnancy, consistent with findings from other studies conducted in Iran and other nations. CONCLUSIONS: Since this study is the first to document the risk factor for BoHV-1 infection in Shahrekord, Iran, we could infer that the virus is extensively dispersed in this area.


Assuntos
Doenças dos Bovinos , Infecções por Herpesviridae , Herpesvirus Bovino 1 , Gravidez , Feminino , Bovinos , Animais , Progesterona , Perda do Embrião/veterinária , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/veterinária , Doenças dos Bovinos/epidemiologia , Estudos Soroepidemiológicos , Estudos Transversais , Fazendas
19.
BMC Vet Res ; 19(1): 74, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264393

RESUMO

BACKGROUND: The European bison (Bison bonasus) is a near threatened species and requires health monitoring. The aim of the present study was to determine the prevalence of antibodies to pathogens known to cause respiratory and digestive illness in ruminants. RESULTS: In the studied 328 European bison, the highest seroprevalence was observed for Bovine herpesvirus-1 (BoHV-1) (50.27%), Bovine Coronavirus (BCoV) (26.36%), and Bluetongue Virus (BTV) (12.83%). For Mycoplasma bovis strains and Bovine Viral Diarrhea Virus (BVDV), positive results were rare. Interestingly, a higher prevalence of BTV antibodies was noted in the northeastern populations and older animals. CONCLUSIONS: Our findings indicate that the Polish European bison population appears to have considerable contact with BoHV-1; however, this does not appear to be of great significance, as clinical symptoms and post-mortem lesions are rarely noted in Polish European bison population. The high seroprevalence of BTV in the north-east of Poland is an ongoing trend, also noted in previous studies. It is possible that European bison may perpetuate the virus in this region. This is the first report of antibodies for BCoV in European bison.


Assuntos
Bison , Herpesvirus Bovino 1 , Animais , Polônia/epidemiologia , Estudos Soroepidemiológicos , Anticorpos Antivirais , Sistema Digestório
20.
Microbiol Spectr ; 11(4): e0011723, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37227295

RESUMO

Bovine herpesvirus 1 (BoHV-1), an important bovine viral pathogen, causes severe disease in the upper respiratory tract and reproductive system. Tonicity-responsive enhancer-binding protein (TonEBP), also known as nuclear factor of activated T cells 5 (NFAT5), is a pleiotropic stress protein involved in a range of cellular processes. In this study, we showed that the knockdown of NFAT5 by siRNA increased BoHV-1 productive infection and overexpression of NFAT5 via plasmid transfection decreased virus production in bovine kidney (MDBK) cells. Virus productive infection at later stages significantly increased transcription of NFAT5 but not appreciably alter measurable NFAT5 protein levels. Virus infection relocalized NFAT5 protein and decreased the cytosol accumulation. Importantly, we found a subset of NFAT5 resides in mitochondria, and virus infection led to the depletion of mitochondrial NFAT5. In addition to full-length NFAT5, another two isoforms with distinct molecular weights were exclusively detected in the nucleus, where the accumulation was differentially affected following virus infection. In addition, virus infection differentially altered mRNA levels of PGK1, SMIT, and BGT-1, the canonical downstream targets regulated by NFAT5. Taken together, NFAT5 is a potential host factor that restricts BoHV-1 productive infection, and virus infection hijacks NFAT5 signaling transduction by relocalization of NFAT5 molecules in cytoplasm, nucleus, and mitochondria, as well as altered expression of its downstream targets. IMPORTANCE Accumulating studies have revealed that NFAT5 regulates disease development due to infection of numerous viruses, underlying the importance of the host factor in virus pathogenesis. Here, we report that NFAT5 has capacity to restrict BoHV-1 productive infection in vitro. And virus productive infection at later stages may alter NFAT5 signaling pathway as observed by relocalization of NFAT5 protein, reduced accumulation of NFAT5 in cytosol, and differential expression of NFAT5 downstream targets. Importantly, for the first time, we found that a subset of NFAT5 resides in mitochondria, implying that NFAT5 may regulate mitochondrial functions, which will extend our knowledge on NFAT5 biological activities. Moreover, we found two NFAT5 isoforms with distinct molecular weights were exclusively detected in the nucleus, where the accumulation was differentially affected following virus infection, representing a novel regulation mechanism on NFAT5 function in response to BoHV-1infection.


Assuntos
Infecções por Herpesviridae , Herpesvirus Bovino 1 , Humanos , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/metabolismo , Fatores de Transcrição NFATC/metabolismo , Citoplasma/metabolismo , Núcleo Celular/metabolismo , Técnicas de Cultura de Células , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...